
Informatics Practices
Class XII (As per CBSE Board)

Chapter 5
Database query

using sql–group by,

Operations on
relation

New
syllabus
2021-22

Visit : python.mykvs.in for regular updates

MySQL Order By

MySQL Order By clause is used to sort the table data in
either Ascending order or Descending order. By default,
data is not inserted into Tables in any order unless we have
an index.

So, If we want to retrieve the data in any particular order,
we have to sort it by using MySQL Order By statement.

Syntax:-SELECT Column_Names

FROM Table_Name

ORDER BY {Column1}[ASC | DESC] {Column2}[ASC | DESC]

Visit : python.mykvs.in for regular updates

MySQL Order By

MySQL Order by– e.g.

Suppose we are having student table with following data.

Now we write the query – select * from student order by class;

Query result will be in ascending order of class.If we not specify asc/desc in
query then ascending clause is applied by default

Visit : python.mykvs.in for regular updates

MySQL Order By

MySQL Order by– e.g.

Suppose we are having student table with following data.

Now we write the query – select * from student order by class desc;

Query result will be in descending order of class
Visit : python.mykvs.in for regular updates

MySQL Order By

MySQL Order by – e.g.

Suppose we are having student table with following data.

Now we write query–select * from student order by class asc, marks asc;

Query result will be ascending order of class and if same class exists
then ordering will done on marks column(ascending order)

Visit : python.mykvs.in for regular updates

MySQL Order By

MySQL Order by– e.g.

Suppose we are having student table with following data.

Now we write query–select * from student order by class asc, marks desc;

Query result will be ascending order of class and if same class exists
then ordering will done on marks column(descending order)

Visit : python.mykvs.in for regular updates

MySQL Group By

The GROUP BY clause groups a set of rows/records into a
set of summary rows/records by values of columns or
expressions. It returns one row for each group.
We often use the GROUP BY clause with aggregate
functions such as SUM, AVG, MAX, MIN, and COUNT. The
aggregate function that appears in the SELECT clause
provides information about each group.
The GROUP BY clause is an optional clause of the SELECT
statement.
Syntax –
SELECT 1, c2,..., cn, aggregate_function(ci)
FROM table WHERE where_conditions GROUP BY c1 , c2,...,cn;
Here c1,c2,ci,cn are column name

Visit : python.mykvs.in for regular updates

MySQL Group By

MySQL group by – e.g.

Suppose we are having student table with following data.

Now we write query–select class from student group by class;

Query result will be unique occurrences of class values,just similar
to use distinct clause like(select distinct class from student).

Visit : python.mykvs.in for regular updates

MySQL Group By
MySQL GROUP BY with aggregate functions
The aggregate functions allow us to perform the calculation of a set of rows and return a
single value. The GROUP BY clause is often used with an aggregate function to perform
calculation and return a single value for each subgroup.
For example, if we want to know the number of student in each class, you can use the
COUNT function with the GROUP BY clause as follows:Suppose we are having student table
with following data.

Now we write query–select class,count(*) from student group by class;

Query result will be unique occurrences of class values along with counting of
students(records) of each class(sub group).

Visit : python.mykvs.in for regular updates

MySQL Group By

MySQL GROUP BY with aggregate functions

we are having student table with following data.

Now we write query–select class,avg(marks) from student group by class;

Query result will be unique occurrences of class values along with average
marks of each class(sub group).

Visit : python.mykvs.in for regular updates

MySQL Group By
MySQL GROUP BY with aggregate functions (with where and order by clause)
we are having student table with following data.

Now we write query–select class,avg(marks) from student where class<10 group
by class order by marks desc;

Query result will be unique occurrences of class values where class<10 along with
average marks of each class(sub group) and descending ofer of marks.

Visit : python.mykvs.in for regular updates

MySQL Group by
with Having

The HAVING clause is used in the SELECT
statement to specify filter conditions for a
group of rows or aggregates. The HAVING
clause is often used with the GROUP BY
clause to filter groups based on a specified
condition. To filter the groups returned by
GROUP BY clause, we use a HAVING clause.

WHERE is applied before GROUP BY, HAVING
is applied after (and can filter on aggregates).

Visit : python.mykvs.in for regular updates

MySQL Group By
with having

MySQL GROUP BY with aggregate functions

we are having student table with following data.

Now we write query–select class,avg(marks) from student group by class
having avg(marks)<90;

Query result will be unique occurrences of class values along with average
marks of each class(sub group) and each class having average marks<90.

Visit : python.mykvs.in for regular updates

MySQL Group By
with having

MySQL GROUP BY with aggregate functions

we are having student table with following data.

Now we write query–select class,avg(marks) from student group by class
having count(*)<3;

Query result will be unique occurrences of class values along with average
marks of each class(sub group) and each class having less than 3 rows.

Visit : python.mykvs.in for regular updates

Operations on relation

RELATIONAL ALGEBRA is a widely used query
language and in DBMS concepts. It collects
instances of relations as input and gives
occurrences of relations as output.

It uses various operations on relation. The
output of these operations is a new relation,
which might be formed from one or more
input relations. Here relation means set or
table

Visit : python.mykvs.in for regular updates

Operations on relation

Basic Relational Algebra Operations:
Relational Algebra devided in various groups

Unary Relational Operations
• SELECT (symbol: σ)
• PROJECT (symbol: π)
• RENAME (symbol:)

Relational Algebra Operations From Set Theory
• UNION (υ)
• INTERSECTION (),
• DIFFERENCE (-)
• CARTESIAN PRODUCT (x)

Binary Relational Operations
• JOIN
• DIVISION

We will cover here the highlighted only.

Visit : python.mykvs.in for regular updates

Operations on relation

Union Operator (∪)
Union operator is denoted by ∪ symbol and it is used to
select all the rows (tuples) from two tables (relations).
Lets discuss union operator a bit more. Lets say we have
two relations R1 and R2 both have same columns and we
want to select all the tuples(rows) from these relations then
we can apply the union operator on these relations.
The rows (tuples) that are present in both the tables will
only appear once in the union set. In short you can say that
there are no duplicates present after the union operation.
Syntax of Union Operator (∪)

table_name1 ∪ table_name2

Visit : python.mykvs.in for regular updates

Operations on relation

Union Operator (∪) Example

Table 1: COURSE
Course_Id Student_Name Student_Id
--------- ------------ ----------
C101 Freya S901
C104 Freya S901
C106 Mohak S911
C109 praveen S921
C115 lokesh S931

Table 2: STUDENT
Student_Id Student_Name Student_Age
------------ ---------- -----------
S901 Freya 19
S911 Mohak 18
S921 praveen 19
S931 lokesh 17
S941 chandu 16
S951 rinku 18

Query:
∏ Student_Name (COURSE) ∪
∏ Student_Name (STUDENT)
Output:

Student_Name

Freya
chandu
praveen
lokesh
rinku
Mohak

Mysql Query
SELECT student_name FROM Course
UNION
SELECT Student_name FROM Student
ORDER BY City;

Visit : python.mykvs.in for regular updates

Operations on relation

Intersection Operator (∩)
Intersection operator is denoted by ∩ symbol and it is used
to select common rows (tuples) from two tables (relations).
Lets say we have two relations R1 and R2 both have same
columns and we want to select all those tuples(rows) that
are present in both the relations, then in that case we can
apply intersection operation on these two relations R1 ∩
R2.
Only those rows that are present in both the tables will
appear in the result set.
Syntax of Intersection Operator (∩)
table_name1 ∩ table_name2

Visit : python.mykvs.in for regular updates

Operations on relation

Intersection Operator (∩) Example

Lets take the same example that we have taken above.
Table 1: COURSE
Course_Id Student_Name Student_Id
--------- ------------ ----------
C101 Freya S901
C104 Freya S901
C106 Mohak S911
C109 praveen S921
C115 lokesh S931

Table 2: STUDENT
Student_Id Student_Name Student_Age
------------ ---------- -----------
S901 Freya 19
S911 Mohak 18
S921 praveen 19
S931 lokesh 17
S941 chandu 16
S951 rinku 18

Query:
∏ Student_Name (COURSE) ∩
∏ Student_Name (STUDENT)
Output:

Student_Name

Freya
Mohak
praveen
lokesh

Mysql query
Select course.student_name from couse ,
student where
course.student_name=student.student_name;

Visit : python.mykvs.in for regular updates

Operations on relation

Minus/Set Difference (-)
Set Difference is denoted by – symbol. Lets say we
have two relations R1 and R2 and we want to
select all those tuples(rows) that are present in
Relation R1 but not present in Relation R2, this
can be done using Set difference R1 – R2.

Syntax of Set Difference (-)

table_name1 - table_name2

Visit : python.mykvs.in for regular updates

Operations on relation

Set Difference (-) Example
Lets take the same example that we have taken above.
Table 1: COURSE
Course_Id Student_Name Student_Id
--------- ------------ ----------
C101 Freya S901
C104 Freya S901
C106 Mohak S911
C109 praveen S921
C115 lokesh S931

Table 2: STUDENT
Student_Id Student_Name Student_Age
------------ ---------- -----------
S901 Freya 19
S911 Mohak 18
S921 praveen 19
S931 lokesh 17
S941 chandu 16
S951 rinku 18

Query:
Lets write a query to select those student
names that are present in STUDENT table
but not present in COURSE table.
∏ Student_Name (STUDENT) - ∏
Student_Name (COURSE)
Output:
Student_Name

chandu
rinku

Mysql query
SELECT c.student_name
FROM student as a
Left joint
course as c on
s.student_name=c.student_name;
Mysql does not support minus clause

Visit : python.mykvs.in for regular updates

Operations on relation

Cartesian product (X)/cross joint

Cartesian Product is denoted by X symbol.
Lets say we have two relations R1 and R2
then the cartesian product of these two
relations (R1 X R2) would combine each tuple
of first relation R1 with the each tuple of
second relation R2.

Visit : python.mykvs.in for regular updates

Operations on relation

Cartesian product (X) example

Table a and Table b as shown
below

Mysql query –

Select * from a,b;

Select * from a cross join b;

Visit : python.mykvs.in for regular updates

Degree of cartesion product is 3 and cardinality is 4=(2 rows of a X 2 rows of b)

Operations on relation

Join – Join is used to fetch data from two or more tables,
which is joined to appear as single set of data. It is used for
combining column from two or more tables by using values
common to both tables.

Types of JOIN
Following are the types of JOIN that we can use in SQL:
• Inner
• Outer
• Left
• Right

Visit : python.mykvs.in for regular updates

Operations on relation

INNER Join or EQUI Join⋈

This is a simple JOIN in which the result is
based on matched data as per the equality
condition specified in the SQL query.

Visit : python.mykvs.in for regular updates

Operations on relation

INNER Join or EQUI Join example

Table a and Table b as shown below

Mysql query –
Select course.student_name from
couse , student where
course.student_name=student.stude
nt_name;

Select a.name from a inner join b
where a.name=b.name;

Visit : python.mykvs.in for regular updates

Operations on relation

Natural JOIN(⋈)
Natural Join is a type of Inner join which is based on
column having same name and same datatype present
in both the tables to be joined.E.g.

Select * from a natural join b;

Visit : python.mykvs.in for regular updates

Operations on relation

LEFT Outer Join
The left outer join returns a resultset table with the matched data from the
two tables and then the remaining rows of the left table and null from the
right table's columns. E.g.

Mysql query –
Select * from a left outer join b on
(a.name=b.name);

Visit : python.mykvs.in for regular updates

Operations on relation

RIGHT Outer Join

The right outer join returns a resultset table with the matched data from the
two tables being joined, then the remaining rows of the right table and null
for the remaining left table's columns.E.g.

Mysql query –
Select * from a right outer join b on
(a.name=b.name);

Visit : python.mykvs.in for regular updates

Operations on relation

Full Outer Join

The full outer join returns a resultset table with the matched data of two
table then remaining rows of both left table and then the right table.E.g.

Mysql query –
Select * from a left outer join b on
(a.name=b.name) union Select * from
a right outer join b on
(a.name=b.name) ;

Visit : python.mykvs.in for regular updates

